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1. Introduction

Quantum affine algebras and their representations are intensively studied now
by physicists and mathematicians. These algebras are naturally connected with
trigonometric solutions of the Yang-Baxter equation [6]. They appear also as
symmetries of quantum deformations of integrable systems [5].

Quantum affine algebras are usually defined as Hopf algebras with Chevalley
generators and with g-deformed standard relations. Unfortunately, this form
is not convenient for some applications, like studying finite-dimensional rep-
resentations and developing g-vertex operator calculus. Different approaches
of defining quantum affine algebras as quantizations of current algebras were
presented in the works [1,3,4,11].

The main goal of this lecture is to explain the mysterious formulae of ref. [3]
from the point of view of algebraic calculations with Cartan-Weyl generators.
We explain here how to obtain “quantized current generators” and commutation
relations between them from the construction of Cartan—Weyl generators [7,8]
for quantum affine algebras. The basic concepts in our approach are the notions
of normal ordering of the root system and g-commutator of the root vectors. By
use of the universal R-matrix which was written down explicitly in ref. [7] we
describe the formulae for comultiplication in Drinfeld’s realization of quantum
affine algebras.
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2. Notations

Let g be a nontwisted affine Lie algebra with symmetrizable Cartan matrix
A4 = (a;;) (4¥™ = (als.Jy.m) is the corresponding symmetrical matrix) and let
IT = {ap,y,...,a,} be a system of simple roots for g. We assume that the
roots Il = {a,s,...,a,} generate the system A, (g) of positive roots of
the corresponding finite-dimensional Lie algebra g. The quantum deformation

U,(g) is a unital algebra with generators e4,,, kX! = g (i = 1,2,...,r),
and the defining relations
[/‘jfl kil] =0, kn,-eia, — qi(”“‘”)fia,ka,, (1)
/"“l - I\u_l
[ell,’ ()Aa,] = 5 —_——_;7 (2)
q—4
(adg xq,) " etra, =0 fori# j, ¢ =q,q "', (3)
where (ad, e, )ep is a g-commutator:
(adges)ep = e, e5], = eaep — q“Pege, (4)

and («, B) is a scalar product of the roots « and 8: (aj, ;) = a;i™. We define
a comultiplication in U, (g) by the formulae

A(ka,) = ka, ® k{:,’ (5)

A(ea,) = €y ® 1 + ku_,vl & €y > A(effx,) = €_qy b2 ka, +1 ®€,,,‘ (6)
We denote by a symbol (*) an anti-involution in U, (g), defined as (k,,)* =
1 (€10,)" = €z, (@)* = g~'. We also use the standard notations U, (b )

and U, (b_) for the Borel subalgebras, generated by kE, e, and kE', e_,, cor-
respondingly. We also write

2 X" X"
= 4 ... = 7
exp, (X) 1= 1+ X + Gy 4+ e f Z TR (7)
_ gt q“—q* (g lo)
(@)g := 1 lalg:= g g dei=d (8)

3. Cartan—-Weyl basis for U,(g)

Let A, be the system of all positive roots with respect to I'l. It turns out that
a procedure of the construction of the quantum Cartan—-Weyl basis has to be in
agreement with the choice of normal ordering in the reduced root system A, .
Recall the definition of normal order in A, [2,12].
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Definition 3.1. We say that the system A, is in normal ordering if its roots are
written in the following way: (/) all multiple roots follow each other in an ar-
bitrary order; (ii) each non-simple root o« + f € A, , where a # A has to be
written between « and £.

Fix some normal ordering in A, (g) := A, satisfying an additional condition:
aj+nd <kéd<(d—«;)+10 (9)

for any simple roots a;,a; € Ay (g) , k,/,n > 0. Here J is a minimal positive
imaginary root. Apply the following inductive procedure for the construction of
the real root vectors e,,e_,, ,y € A, (g), starting from the simple root vectors
of A, (2).

Lety € A, (g)bearealrootanda,...,y,...,  be a minimal subset restricting
y (y = a + B). Then we set

€, 1= [ea,eﬂ]q, e_y .= [67;;,6’—0]471 (10)

if e+, and e,y have already been constructed.
When we get the imaginary root é , we stop for a moment and use the following
formulae:
i)

ey = e (i) [(ai,@i) 17 [€ayr €50, gs (11)

Cins = (=1)"ex(a) (ad o) ey, (12)

Co-ains = enlai)(ad ef”) €5, (13)

ers) = en(a) (s, ) 17" [€as(n-115 €50, )q (14)

Here (adx)y = [x,y] is a usual commutator, ¢, (e;) = (—1)"@) and 6:
Iy = {ay,...,ar} — {0, 1} is chosen in such a way that

(aj,a) #0  — (o) # 0(aj) . (15)

Then we use the inductive procedure again to obtain the other real root vectors
€y 1ns> €5—y+ns, 7 € A, (g). We come to the end by defining the imaginary root

!

vectors e} through the intermediate vectors ¢/ ;) by means of the following
(Schur) relations:

TERND>

P1+2p2+...+npy=n

(q(ai,ai) _ q—(ai,a.))zl"‘l
Pl pal

AL i} \Pn
(e ey,
(16)
In terms of generating functions
E,’(Z) — (q(a,,a,-) _ q—(a,-,a,')) Z e;la(i)zn

n>1
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and
E[(Z) — (q(a,,a,‘) _ qf(a,,u,))z();;)“n

n>1

relation (16) may be rewritten in an inverted form:
Ei(z) =In(l + El(2)). (17)

The vectors e, and e_, = (¢,)*, y € A, (g) are the Cartan-Weyl generators for
U, (8).
The following proposition holds [7,8] .

Proposition 3.1. The root vectors ex, € U,(g), 7 € A, satisfy the relations

(ex;)" = egy, kailer = g+ kail’ (18)
-1

[ey,e_y] = a(y)zl-__lq—i, a(y) edC, (19)

[ea-€p]q = Z thy,.e}’,’l‘legz...g}’,’:n’ (20)

Q<Y<Y <

where . k;7; = « + f and the coefficient C are rational functions of g such that
they do not depend on the Cartan elements k,,, { = 1,2,...,#; the monomials
(ﬁmte products) eyle,?---epy pp < 2 < --- < yy and e ]()jz~~ e <

y2 < --- < yn), generate subalgebra U, (b, ) and U, (b_), correspondingly.

Remark. In the relation (18)-(20) the root vectors of imaginary roots y =
+nd have to be labeled by an additional index s: ei )6, s = 1,2,..., mult, where
mult is the multiplicity of the imaginary root xnd.

If we introduce the new elements
e =e, e_,=—-kle, €A, (21)

then relation (20) is generalized as follows:

e L. Sty =M ’”z.,,”ms’
(€ p.8ule = Y Conpomr €25, e e et ey, (22)
where the sum is taken on yy,...,7p, ¥],-.., 75 and my,..., m; such that

N<.o.<Pi<a< <y <...<¥p
> (mpyp—my) = f—a (23)

!
and the coefficients C are rational functions of ¢ such that they do not depend
on the elements k,,,i = 1,2,.
The imaginary root vectors e(’) generate the g-analog of the Heisenberg algebra
which is described in the followmg proposition.
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Proposition 3.2. The following relations are valid for imaginary root vectors:

qn(a,,a, _ q—n(a, J0j)

[Ca;emsre D] = Corrmams, M>0,n>0, (24)

n(q(a_, ;) -q (a/al))

qn(ul aj) q —n(aj,a;)

[ems €50, 4ms) = €5—ar(mem)ss M 20,n>0, (25)

n(q aj,aj) —q —(aj, u/))
(qn(a,-,aj _q—n(a,-,a,-))
n(gleie) — g=lanay (glaja)) _ g=(aja;))

[€.e9)] = 8 _s (kj —k;"). (26)

Remark. Relation (24) is still valid for any integer m and k& > 0 if we replace
€4;+ms DY €a, + ms (see (21)) in both sides. The relation (25) can be extended to
negative values of £ and m in an analogous manner.

4. Drinfeld’s realization of quantum nontwisted affine algebras

V.G. Drinfeld suggested another realization of the quantum nontwisted affine
algebra [3]. In this description the algebra U, (g) is generated by the elements
¢, D, &, xi where i = 1,2,...,r; k € Z satisfying the relations

[C,X,‘k] = [C9él:]t(] = [CaD] = O> [D’xik] = kxilﬂ [D’éik] = ké,:}:(’ (27)

[Xi» Xj1] = 46, _k~'h ™% sinh(khB;;) sinh(khc/2), (28)
[xi, 5] = +2k~'n~ " sinh (khB;;) exp(T |k| - hic/4) Tear (29)
él?,tkﬂéﬁ_ ihBUé/l Lk+1 = eiﬁBUézkfﬂH é/l+1 (30)
(Sk-¢0] = 6k~ Nyppr CCD gL hei=R/4y, (31)

and g-analogs of the Serre relations, which we do not write down here (see, e.g.,
ref. [3]). The elements ¢; p, i, are defined from the relations

Z¢,pu P = exp-h(} x,o+lepu ?), (32)
p<0

Zy/,pu P = exph(3 x,o+2x,pu ), (33)
p>0

Bi,j=§(ai)aj)5 l)j=1’273---7r
We should like to show here how to express generators x;x and fiik through
Cartan-Weyl generators €,, 4 ns, €5—qo, + nds ei’,)l s+ Of course, the resulting relations

will differ slightly from (27)—(33), because we use [n], instead of h~! sinh nh.
Let ¢ = exp(—37), ¢ = hs. We put

Xin=ed, i=1,...,r, nez (34)
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and
&= Copnsq ™M, & =, 5™ nel, (35)
Win = (q(a,-,a,)_q—(a,v,a,))qhaie:l(ai)’ bin = (q(al’a')_q_(a“a[))ei(:;)athaB n>0.
(36)
Then, due to proposition 3.2, we have
Proposition 4.1. The following relations are valid:
[szz 1']0 ch _q‘kc
(X, Xju] = Ok - , (37)
o “ k(2B 114(2Biile 4 g7
n2B; ;

[Xin, i] - _[__#]_qqil"wzéi (38)

L] = F- == .
i =L
Now we give an interpretation of the relations (27)-(33).

(i) In terms of Cartan-Weyl generators the Serre relations are equivalent to

the following corollary of proposition 3.1.

[faseﬂ]q = O’

if a < B are neighbouring roots in the sense of fixed normal ordering of the root
system;
(i1) the defining relations (11)-(14) may be easily generalized to the identities

i)
[ea,+nda€6—a,-+m6] = Cai,je(n+m+1),5, (39)

where C is a constant. Relations (39) rewritten by means of (16) or (17) in
terms of the generators e,f;) give us (31).

(i11) Formulae (30) define the commutation relations between the real root
VECLOTS €4, 4ns, I = l,...,7 OF €5_4,4ms, i = 1,...,r. Their translation into
the language of proposition 3.1 has a more complicated form, except for the
simplest case k = /, { = j when they mean g-commutation of the neighbouring
root vectors again.

5. The Universal R-matrix and formulae for comultiplication in U,(g)

The universal R-matrix for U, (g) is, by definition, an element of (some ex-
tension of) U, (g) ® U, (g), satisfying the following conditions:

A(x) = RA(x)R™' Vx e U,(g) (40)

(A®id)R = RPRB, (id®A)R = RBR, (41)

Here A’ is an opposite comultiplication in U (g): A’ = gA, where c (u®v) =
v U.
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An explicit expression for the universal R-matrix for the quanturn nontwisted
affine algebras was given in ref. [7]. Namely, for a fixed normal ordering of
Ay (g), satisfying (9), we can present it as follows:

R = RERmR K. (42)

Here K = qznfd"fh’@h" where d;; is an inverse to the (extended) nondegenerate
symmetric Cartan matrix (asym) ij=-10,...r,

RE = H R, Re= ][I & (43)
YEAT, y<d YEAT, y>4
where .
R, = exp, (a(y) 'e,®e,), (44)
a(y) is the coefficient in the relation (19) of proposition 3.1. and the order
in the product (43) coincides with a chosen normal ordering of A, , for the
construction of the Cartan—-Weyl basis satisfying (9). Finally,

Rim = exp (Z cf e el ®€Un)5> (45)

n>0
where cff ; 1S an inverse matrix to
[n2B;l,
n[2B:i14[2B;,14(q —q7")
The factors R, and R;y may be used to describe the comultiplication formulae
for nonsimple root vectors analogously to the finite-dimensional case [10,9].

Proposition 5.1. The following identities are valid for any root o« € A,

—1
A(ey) = (HRy) (1€ + e ®q ") (HRy) : (46)

y<a y<a
—1
Ne_,) = (HRy) (@ @e_n+en®l) (HRV> @
y<a y<a

These formulae, applied to the roots €44, s, e,ig) give us the formulae for co-
multiplication of x; 4, &£ .
In the conclusion we should like to mention that V.G. Drinfeld [3] suggested
another comultiplication for quantum affine algebras. In our notation this co-
multiplication is defined by the convention that
Aley)) =eyg @1 +q ey, Alell) =el)wg™ +10el) (48)
Analogously to the above statement we state that comultiplication A can be

obtain from the usual comultiplication (5), (6) by conjugation with R
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Note also that the arguments presented in this lecture can be extended to the
twisted case (an example for A§2 Vs given in ref. [8]).
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